e-works数字化企业网  »  文章频道  »  管理信息化  »  BI

BI商务智能=数据+分析+决策+利益

2017/8/7    来源:互联网    作者:佚名      
关键字:BI商务智能  商业智能  
商务智能通常被理解为将企业中现有的数据转化为知识,帮助企业做出明智的业务经营决策的工具。

一、背景介绍

    人类社会从物物交换到货币的产生,到形形色色的交易,产生了我们现在繁荣、复杂的各种商业活动。利益是商务的核心,而商务需要经过买卖双方的交易,谈判,而商品的流通又需要物流、库存,其中业务流程十分繁琐,然而科技进步改善或者正在改变着其形式,人们的工作效率正在极大地提高。

    在这个信息化的时代,许多传统业务被信息化手段所取代或者信息化作为其辅助手段。于是乎,在这个时代,所有的人都在谈数据,并且相关的商务数据呈爆炸性指数级的增长。可是,不是所有的数据都是有用的,所以人们需要从中挖掘有用的信息,用以指导现实工作。

    商务智能,英文为Business Intelligence,简写为BI。商务智能通常被理解为将企业中现有的数据转化为知识,帮助企业做出明智的业务经营决策的工具。比如,百货商场每天有各种各样的商品被出售,其POS系统存储着商品的销售情况,数据量十分庞大。从这些数据,我们利用一定的数学模型和智能软件工具进行分析,知道哪些产品最热销,哪些时段人们喜欢购买什么。接着,运用分析后的结果进行决策,比如分析后得知下雨天的时候啤酒和炸鸡的销量比其他天气时段更多,于是我们决定在下雨的日子增大啤酒和炸鸡的产量。通过这些分析和决策,我们得到了商业利润的增加,这种利润是我们利用现代工具进行商务智能的动力。这个过程可以总结为以下的一个等式:

    商务智能=数据+分析+决策+利益

二、数据获取

    传统的数据获取是手工进行纸质记录,缺点是记录容易出错,且随着时间的流动,其数量会大大增加以致于查找历史数据的困难。比如,传统地主家的管家进行家庭财政的登记,账本厚又重,对账极其麻烦,而且说不定账本会因为火灾或各种原因而破损,如被老鼠咬烂了。

    随着科技的进步,有了计算机,于是数据存到了磁带,然后是磁盘。世界上有了社会分工而美妙,每个人都在自己擅长的领域工作,从而创造着更大的利益。于是乎,不懂计算机的小伙伴借助着别人开发的管理系统进行数据的管理,比如超市的商品管理系统,公司内部的人员管理系统。而软件程序员借助了数据库,数据仓库等产品进行设计编码,创造了上述的管理系统。

    于是,一层接力一层,数据的获取从手工一个个用笔记下来到使用计算机键盘进行录入。通过现代科技手段,查看历史数据只要进行搜索,很快很好就能得到十年前的数据,从而可以更大效率地进行数据分析。

    商务智能,智能二字凸显了计算机的重要性。计算机的一切都是0,1二进制组成,这两个最普通不过的符号构建了计算机整个数据大厦。如何更好的将数据存到计算机磁盘中,并迅速的读取出来呢?早期的数据存储是使用卡片进行数据读取,后来便产生了现代计算机的存储体系,寄存器,内存,磁盘。从硬件开始,后来出现了软件层面的文件系统,IO流。为了更方便存储大量数据,出现了数据库软件,各种数据库理论和工具开始出现。

    目前使用最多的数据库是1993年E.F.Codd提出的关系数据库。

三、数据分析

    数据分析方面主要依赖数据挖掘方面的知识,因为商务智能是数据挖掘领域的一个分支。数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。

    数据挖掘利用了来自如下一些领域的思想:(1) 来自统计学的抽样、估计和假设检验,(2)人工智能、模式识别和机器学习的搜索算法、建模技术和学习理论。数据挖掘也迅速地接纳了来自其他领域的思想,这些领域包括最优化、进化计算、信息论、信号处理、可视化和信息检索。一些其他领域也起到重要的支撑作用。特别地,需要数据库系统提供有效的存储、索引和查询处理支持。源于高性能(并行)计算的技术在处理海量数据集方面常常是重要的。分布式技术也能帮助处理海量数据,并且当数据不能集中到一起处理时更是至关重要。

    主要的分析算法有分类 (Classification)估计(Estimation)预测(Prediction)相关性分组或关联规则(Affinity grouping or association rules)聚类(Clustering)等。这些算法主要依赖数学大厦进行构建,大多数商业数据挖掘软件已经实现了这些功能,方便普通人士的使用。

    通过使用数据挖掘软件,可以对存储在数据库中的数据进行分析处理,得到一定的统计和计算结果。这些结果可以指导现实的决策。

    目前的数据挖掘软件有一般分析目的用的软件包SAS Enterprise Miner,SPSS Clementine,IBM Intelligent Miner等,针对特定功能或产业而研发的软件KD1(针对零售业)Options & Choices(针对保险业)HNC(针对信用卡诈欺或呆帐侦测)Unica Model 1(针对行销业)iEM System (针对流程行业的实时历史数据)。

责任编辑:程玥
本文来源于互联网,e-works本着传播知识、有益学习和研究的目的进行的转载,为网友免费提供,并以尽力标明作者与出处,如有著作权人或出版方提出异议,本站将立即删除。如果您对文章转载有任何疑问请告之我们,以便我们及时纠正。联系方式:editor@e-works.net.cn tel:027-87592219/20/21。
e-works
官方微信
掌上
信息化
编辑推荐
新闻推荐
博客推荐
视频推荐