e-works数字化企业网  »  文章频道  »  基础信息化  »  大数据

大数据应用安全研究报告(11家公司实践详解)

2017/5/20    来源:中国电子研究院    作者:佚名      
关键字:大数据  大数据应用  
阿里云数加大数据平台提供从数据采集,加工、数据分析、机器学习到最后数据应用的全链路技术和服务。
    一、阿里云大数据安全实践
 
    阿里云数加大数据平台提供从数据采集,加工、数据分析、机器学习到最后数据应用的全链路技术和服务。
 
大数据应用安全研究报告(11家公司实践详解)
 
    基于阿里云数加大数据平台,除了可以打造智能可视化透明工厂、智能交通实时预测和实时监控监测、智能医院就医接诊服务,以及大数据网络安全态势感知系统外,还可以打造成一个满足政府不同部门以及政企之间实现数据共享的数据交换平台。
 
    为了保障数据共享和交换过程中的数据安全,数家大数据平台通过安全机制和管控措施实现不同用户之间数据的“可用不可见”,具体如图B-1所示:
 
大数据应用安全研究报告(11家公司实践详解)
 
    ▊为确保数据交换和共享的安全,避免数据滥用,阿里云数加平台提供了一系列安全措施:
 
    密钥管理和鉴权。提供统一的密钥管理和访问鉴权服务,支持多因素鉴权模型;
 
    访问控制和隔离。实施多租户访问隔离措施,实施数据安全等级划分,支持基于标签的强制访问控制,提供基于ACL的数据访问授权模型,提供全局数据视图和私有数据视图,提供数据视图的访问控制;
 
    数据安全和个人信息保护。提供数据脱敏和个人信息去标识化功能,提供满足国产密码算法的用户数据加密服务;
 
    安全审计和血缘追踪。提供数据访问审计日志,支持数据血缘追踪,跟踪数据的流向和衍生变化过程;
 
    审批和预警。支持数据导出控制,支持人工审批或系统预警;提供数据质量保障系统,对交换的数据进行数据质量评测和监控、预警;
 
    生命周期管理。提供从采集、存储、使用、传输、共享、发布、到销毁等基于数据生命周期的技术和管理措施。
 
    阿里云基于数据生命周期构建全面的数据安全保障体系,从数据行为、数据内容、数据环境等角度提供技术和管理措施,具体如图B-2所示:
 
大数据应用安全研究报告(11家公司实践详解)
 
    通过实施阿里云大数据安全管控体系,提供“可用不可见”的大数据交换共享平台安全环境,以保障大数据在“存储、流通、使用”过程中的安全。
 
    二、百度大数据安全实践
 
    数据是百度公司的重要资产。百度公司在内部构建了公司级大数据平台,收录公司各个业务领域的数据,建设数据闭环解决方案,推动全公司数据的统一管理、数据共享、数据发现和数据使用。这些聚在一起的数据资产来自多个部门和业务,对安全的要求也不同。
 
    百度非常重视大数据应用过程中的安全保障,在安全方面形成了统一的大数据安全框架,通过在数据全生命周期各环节实施安全技术和管理机制,为大数据平台和用户数据提供安全保障。
 
    ▊百度大数据平台安全架构
 
    百度大数据平台具备基础的系统安全、安全管理,以及以数据安全分级机制为核心的数据安全架构,如图B-3所示:
 
大数据应用安全研究报告(11家公司实践详解)
 
    系统安全和安全管理是百度大数据平台中最基础的安全机制。数据安全架构在整个大数据安全架构中处于极为重要的位置。数据安全架构包括安全审计、安全控制和安全加密三部分,并采用安全分级机制,分为基础级和可选级。
 
    安全基础级别包括安全审计和安全控制两个功能,它是所有在大数据平台的业务数据都会得到的安全基础保障,为大数据平台上的数据提供生命周期过程中的可审计性和细粒度完整控制功能。可选级别包括数据的加解密功能,支持各种强度的加解密算法。
 
    百度大数据平台支持数据的加密存储,考虑到平台每天产生的数据量极其庞大,以及数据运算的效率要求,可以根据数据的业务特点和密级要求来选择不同强度的加密算法。
 
    ▊百度大数据平台关键安全能力
 
    百度提出4A安全体系来构建大数据平台的关键安全能力,主要包括:
 
    Account(账号):为每个用户创建唯一的用户账号,并对用户身份进行鉴别,确保数据访问控制和安全审计可以追溯到个人账号。同时,采用基于角色的用户分组管理,将系统管理角色、系统数据建设角色和数据查看角色进行区分。
 
    Authentication(鉴别):百度大数据平台上的数据访问必须有统一的身份鉴别机制。百度大数据平台采用统一单点登录身份认证技术对用户进行身份鉴别管理。
 
    Authorization(授权):百度大数据平台需要根据数据访问主体身份,以及被访问数据的密级,实现对各类数据的访问授权。对于机密等级以上的数据,需要对接到具体的电子审批流程。此外,数据在流转过程中,大数据平台可以自动判断对应的下一个节点的安全等级和人员授权情况,进行数据流转的安全判断和维护。
 
    Audit(审计):百度大数据平台具有审计日志记录功能,实现对系统中针对用户管理、权限管理、用户登陆、数据获取/访问/修改等行为的完整日志记录。基于系统审计日志,可以实现事中的安全监控,以及事后的行为溯源和取证分析。
 
    三、华为大数据安全实践
 
    华为大数据分析平台FusionInsight基于开源社区软件Hadoop进行功能增强,提供企业级大数据存储、查询和分析的统一平台,帮助企业快速构建海量数据信息处理系统。
 
    FusionInsight是完全开放的大数据分析平台,并针对金融、运营商等数据密集型行业的运行维护、应用开发等需求打造了高可靠、高安全、易使用的运行维护系统和全量数据建模中间件。华为FusionInsight大数据分析平台框架图如图B-4所示:
 
大数据应用安全研究报告(11家公司实践详解)
 
    大数据分析平台汇聚着大量数据,面临着更多的安全威胁和挑战,包括数据滥用和用户隐私泄露问题。华为FuisonInsight大数据分析平台提供可运营的安全体系,从网络安全、主机安全、用户安全和数据安全方面提供全方位的安全防护(如图B-5):
 
大数据应用安全研究报告(11家公司实践详解)

责任编辑:李欢
本文为授权转载文章,任何人未经原授权方同意,不得复制、转载、摘编等任何方式进行使用,e-works不承担由此而产生的任何法律责任! 如有异议请及时告之,以便进行及时处理。联系方式:editor@e-works.net.cn tel:027-87592219/20/21。
e-works
官方微信
掌上
信息化
编辑推荐
新闻推荐
博客推荐
视频推荐