e-works数字化企业网  »  文章频道  »  基础信息化  »  大数据

数据科学家必须知道的 10 个深度学习架构

2017/8/19    来源:图普科技    作者:佚名      
关键字:数据科学家  大数据  
近年来,深度学习的发展势头迅猛,要跟上深度学习的进步速度变得越来越困难了。几乎每一天都有关于深度学习的创新,而大部分的深度学习创新都隐藏在那些发表于ArXiv和Spinger等研究论文中。
    近年来,深度学习的发展势头迅猛,要跟上深度学习的进步速度变得越来越困难了。几乎每一天都有关于深度学习的创新,而大部分的深度学习创新都隐藏在那些发表于ArXiv和Spinger等研究论文中。
 
    数据科学家必须知道的 10 个深度学习架构
 
    本文介绍了部分近期深度学习的进展和创新,以及Keras库中的执行代码,本文还提供了原论文的链接。
 
    简洁起见,本文中只介绍了计算机视觉领域内比较成功的深度学习架构。
 
    另外,文章基于已经掌握了神经网络的知识,并且对Keras已经相当熟悉了的基础。如果你对这些话题还不太了解,强烈建议先阅读以下文章:
 
    《Fundamentals of Deep Learning – Starting with Artificial Neural Network》
 
    《Tutorial: Optimizing Neural Networks using Keras (with Image recognition case study)》
 
    目录
 
  • 什么是深度学习“高级架构”?

  • 不同类型的计算机视觉任务

  • 各种深度学习架构
 
    何为深度学习“高级架构”?
 
    与一个简单的机器学习算法相比,深度学习算法包含了更加多样的模型。其中的原因是在建立一个完整的模型时,神经网络具有很大的灵活性。
 
    有时,我们还可以把神经网络比作乐高积木,可以用它搭建任何简单或者复杂的小建筑。
 
    数据科学家必须知道的 10 个深度学习架构
 
    我们其实可以将“高级架构”简单地定义为一个有着成功模型记录的深度学习架构,这样的“高级架构”主要出现在类似ImageNet的挑战中,在这些挑战中,你的任务是解决问题,比如用给定的数据完成图像识别。简单来说,ImageNet就是一项关于数据集的挑战,而其中的数据集是从ILSVR(ImageNet大规模视觉识别)中获得的。
 
    就像下文即将提到的架构,其中的每个架构之间都有细微的差别,而正是这些差别使它们区别于普通的模型,让它们在解决问题的时候发挥出普通模型不具备的优势。这些架构同样属于“深度模型”的范畴,因此它们的性能也很可能优于其相对应的“浅层模型”。
 
    不同类型的“计算机视觉任务”
 
    本文主要关注于“计算机视觉”,所以很自然地会涉及到“计算机视觉”的任务。顾名思义,“计算机视觉任务”就是建立一个能够复制完成人类视觉任务的计算机模型。这实质上意味着,我们视力所见和感知的内容是一个能够在人造系统中被理解和完成的程序。
 
    计算机视觉任务的主要类型有:
 
  • 物体识别/分类:在物体识别中,你会得到一张原始图像,而你的任务就是判断出这张图像属于哪一类别。

  • 分类及定位:如果图像中只有一个对象,那么你的任务就是找到该对象的位置。这个问题应该更加具体地表述为“定位问题”。

  • 物体检测:在物体检测中,你的任务是识别出物体处于图像中的什么位置。这些对象可能属于同一类别,也可能属于不同类别。

  • 图像分割:图像分割是一项稍微复杂的任务,其目的是将图像的各个像素映射到其对应的各个类别。
 
    数据科学家必须知道的 10 个深度学习架构
 
    目前,我们已经了解了深度学习“高级架构”,并探究了各种类型的计算机视觉任务。那么接下来,我们将列举出最重要的深度学习架构,并且对这些架构进行简单的介绍:
 
    1. AlexNet
 
    AlexNet是第一个深度学习架构,它是由深度学习先锋之一——Geoffrey Hinton和他的同事们共同研究并引入的。AlexNet是一个看似简单但功能非常强大的网络架构,它为现在深度学习的突破性研究铺平了道路。下图是AlexNet架构:
 
    数据科学家必须知道的 10 个深度学习架构
 
    从分解图中我们可以看出,AlexNet其实就是一个简单的架构,其中的卷积层和聚积层相互叠加,最顶部的是全连接层。早在二十世纪八十年代,AlexNet模型就已经被概念化描述了。AlexNet区别于其他模型的关键在于它的任务规模,以及它用于训练的GPU规模。在八十年代,用于训练神经网络的是CPU。而AlexNet率先使用GPU,将训练的速度提高了十倍左右。
 
    虽然AlexNet现在有些过时了,但它仍然是运用神经网络完成各种任务的起点。不管是完成计算机视觉任务,还是语音识别任务,都仍然需要AlexNet。
 
  • Original Paper link

  • Link for code implementation
 
    2. VGG Net
 
    “VGG Net”是由牛津大学“视觉图像研究组”的研究人员引入的。VGG网络的最大特点是它的金字塔状,靠近图像的底部比较宽阔,而顶部的层相对窄且深。
 
    数据科学家必须知道的 10 个深度学习架构
 
    如图所示,VGG Net包含了连续的卷积层,卷积层后紧接着聚积层。聚积层负责让各个层变得更窄。在这篇由组内研究人员共同完成的论文中,他们提出了各种类型的网络,这些网络架构的主要差异是深度不同。
 
    数据科学家必须知道的 10 个深度学习架构
 

责任编辑:李欢
本文为授权转载文章,任何人未经原授权方同意,不得复制、转载、摘编等任何方式进行使用,e-works不承担由此而产生的任何法律责任! 如有异议请及时告之,以便进行及时处理。联系方式:editor@e-works.net.cn tel:027-87592219/20/21。
e-works
官方微信
掌上
信息化
编辑推荐
新闻推荐
博客推荐
视频推荐