e-works数字化企业网  »  文章频道  »  产品创新数字化(PLM)  »  CAE

基于OptiStruct的双弧形实心碳纤维弹翼铺层优化设计(二)

2018/2/23    来源:互联网    作者:孙晓博  李学峰  赵志军  肖和业  张永励  刘宇涛      
关键字:双弧形  弹翼  复合材料  OptiStruct  铺层优化  
针对于小型战术导弹双弧形实心弹翼碳纤维复合材料铺层优化设计一直是工程中的难点,本文借助于OptiStruct在复合材料优化设计的优势,创新性地将OptiStruct三级优化设计和等效设计方法结合起来,实现了双弧形实心碳纤维弹翼的优化设计,由仿真分析结果表明弹翼碳纤维复合材料铺层优化设计显著提高了弹翼的结构承载能力。

    我们分析优化设计的最终结果:翼尖挠度是21.54mm,翼根最大主应变是6951μ。最终我们得到层压板铺层的顺序如图4.6所示。最终的铺层书序为:[45/-45/04/45/-45/04/903/45/-45]s。

5 优化分析与讨论

    该双弧形碳纤维复合材料弹翼采用上下对称铺设,总共34层,每层0.125mm。实际铺层顺序为:[45/-45/04/45/-45/04/903/45/-45]s。

    18

    图5.1(a) 优化后双弧形碳纤维弹翼翼尖挠度变形云图

    19

    图5.1(b) 优化后双弧形碳纤维弹翼绕X扭转角云图

    20

    图5.1(c) 优化后双弧形弹翼翼面主应变云图

    21

    图5.1(d) 优化前后双弧形弹翼扭转角云图对比

    表5.1是双弧形碳纤维弹翼优化前后的翼尖挠度和翼面主应变的有限元计算结果。它阐述了翼尖挠度从优化前的38.21mm降低至33.71mm,减小幅度11.78%;绕X轴的扭转角位移在数值上没有多大的变化;翼面主应变由12370μ减小至11350μ,减小幅度8.25%。一阶模态提高了6.96%。对于工程设计领域来讲,这样的优化效果非常显著,从而证明Optistruct三级优化策略在双弧形碳纤维复合材料弹翼上的应用非常成功。

    表5.1 双弧形碳纤维弹翼优化前后主要参数对比

    22

    分析图5.1(d)所示的双弧形碳纤维弹翼扭转角云图对比,我们从最大的扭转角变化百分比看出相差不大,究其原因是优化前影响扭转角铺层的±45°铺层总数量和优化后的总数量一致,并且都是遵循成对铺设。然而,从整体弹翼优化的角度我们可以发现,优化后弹翼的铺层发生变化,使得优化后和优化前的最大扭转角的区域发生变化,有效地提升了碳纤维弹翼的抗扭转能力。

    碳纤维弹翼优化前的翼面最大主应变是12370μ,这个应变对应的应力非常大,一般的结构部件的复合材料结构很难达到这个强度,也就是说应变不到这个强度铺层就会失效至结构破坏。所以,本文优化设计的目的主要是优化顺序和角度以达到降低结构应力应变和翼尖挠度的效果。本课题的双弧形碳纤维弹翼有限元模型经过三级的优化设计,将翼尖挠度和应变统一降低了11.78%和8.25%,提升了结构抗弯曲能力;同时使得弹翼一阶模态提高6.96%,增强了导弹弹翼的动态特性,使得飞行器结构效率和飞行品质进一步得到提升。

6 总结

    本文通过对双弧形弹翼为等尺寸碳纤维层压板,基于OptiStruct自由尺寸优化、尺寸优化和顺序优化三步走策略优化设计了双弧形碳纤维弹翼铺层的大小,角度和顺序。经验证优化后的碳纤维弹翼翼尖挠度降低11.78%,翼面应变降低8.25%,一阶模态频率提高6.96%;相对于优化前的双弧形碳纤维弹翼,结构的抗变形能力增强了许多,结构抵抗外激励的能力也增加了。由此证明,等效设计方法和OptiStruct分级优化设计方法的结合使得双弧形碳纤维的综合结构效率提升很多,这种创新性的设计方法对于工程其他复杂截面的复合材料结构铺层优化设计有很好的指导意义和参考价值。

责任编辑:张纯子
本文来源于互联网,e-works本着传播知识、有益学习和研究的目的进行的转载,为网友免费提供,并以尽力标明作者与出处,如有著作权人或出版方提出异议,本站将立即删除。如果您对文章转载有任何疑问请告之我们,以便我们及时纠正。联系方式:editor@e-works.net.cn tel:027-87592219/20/21。
e-works
官方微信
掌上
信息化
编辑推荐
新闻推荐
博客推荐
视频推荐