e-works数字化企业网  »  文章频道  »  产品创新数字化(PLM)  »  CAE

VNT涡轮箱喷嘴环CFD数值模拟分析

2006/11/16    来源:e-works    作者:李书奇    张继忠      
关键字:VNT  喷嘴环  CFD  
本文针对整体式电控执行和反馈控制VNT径流涡轮增压器, 利用商业软件CFD计算技术,对额定点和最大扭矩点分别进行数值模拟,并对喷嘴环内部流动机理以及可变喷嘴在调节范围内的气动性能进行分析总结,指出VNT喷嘴环气动性能优化方向。

   1 前言
   
    可变喷嘴涡轮增压器(variable nozzle turbocharger ,VNT)通过对执行器的控制来改变涡轮流通截面积大小,从而实现增压器与发动机良好匹配的目的。发动机怠速和低速端,喷嘴叶片关闭或开度很小,使增压压力增高,从而提高发动机的低速扭矩,改善其响应性。发动机高速运转时,喷嘴叶片全开或开度很大,涡轮流通截面积增大,使增压压力比非控制的涡轮箱压力减小,保证发动机获得所需要的空气和动力[1][2]。
   
    喷嘴环又称为叶片导向器;其作用是使具有一定压力和温度的气体在其中膨胀、加速,将来自涡轮箱的燃气按一定方向送入叶轮并赋予叶轮一定的圆周速度[3]。喷嘴的结构有多种型式,其中气动叶型的喷嘴对气流的流动损失影响最小;在整个涡轮级的设计过程中,喷嘴环速度系数比叶轮速度系数对效率的收益影响要大的多[4],因此,降低喷嘴流动损失是提高涡轮效率的重要手段之一,通过喷嘴内部流动的研究,分析喷嘴叶片在不同调节状态的气体流动特性,可以了解喷嘴内部流动机理,进一步提高气动叶型的设计水平。
   
    本文针对J110VNT径流涡轮增压器,利用商业软件CFD计算技术,对额定点和最大扭矩点(设计点本文不作分析)分别进行数值模拟,并对喷嘴环内部流动机理以及可变喷嘴在调节范围内的气动性能进行分析总结。
   
    本文采用Pro/E进行建模, ICEM CFD进行网格划分, ANSYS-CFX-5.7.1完成流场求解。
   
    2 计算模型和计算网格
   
    本文对图1所示二种开度的涡轮箱喷嘴环进行数值模拟,其中大开度为额定点,小开度为最大扭矩点。
 
  
 
    计算采用四面体和三棱柱混和网格,原因如下:单块网格边界条件的确定以及网格块之间各种信息的传递增加了快速计算分析的难度;对于不同的复杂外形,需要构造不同的网格拓扑结构,生成网格费时费力。而非结构网格可消除结构网格中结构性的限制,节点和单元分布可控性好,能较好的处理边界,适用于模拟真实复杂外型;并且在生成过程中采用一定的准则进行优化判断,能够生成高质量的网格,很容易控制网格的大小和节点密度,便于实现其工程化应用[5]。
 
    由于小开度喷嘴环喉口尺寸很小,小开度网格全局尺寸选取1.0㎜;相应大开度网格尺寸选用1.5 ㎜;涡轮箱流体尺寸选用4.0 ㎜。采用三层三棱柱网格捕获边界层,初始高度涡轮箱取0.5 ㎜,喷嘴环取0.2 ㎜,层高比1.2;采用网格光顺技术进行光顺,网格质量控制在0.4以上。生成网格示意图见图2,网格质量分布示意见图1。
 
    3 CFD数值模拟
 
    为提高计算精确度,计算的流体介质按照发动机排气的真实成分进行计算给出,主要由氮气(76%)、氧气(7%)、水蒸汽(8%)、二氧化碳(7%)组成,忽略其它微量杂质气体。根据涡轮箱进口不同压力、温度,查表得出各组份气体物性参数值,分别计算出喷嘴环两个状态下排气定压比热、动力粘度、导热系数、密度等综合物性参数。
 
    计算采用湍流平均流Navier-Stokes方程结合湍流模型求解,湍流模型选用标准k-e模型;采用松弛因子迭代获得稳态解。
 
    采用高阶精度格式对方程进行离散求解,平均残差小于0.0001或最大迭代次数超过1000次作为收敛判别准则。
 
    通过设置交界面进行涡轮箱计算域和喷嘴环计算域数值传递。
 
    采用亚音进口、亚音出口和绝热、无滑移壁面边界,进口给定燃气流量和燃气温度,出口给定燃气压力;采用默认初始条件进行计算[6]。

责任编辑:孙文婕
本文为e-works原创投稿文章,未经e-works书面许可,任何人不得复制、转载、摘编等任何方式进行使用。如已是e-works授权合作伙伴,应在授权范围内使用。e-works内容合作伙伴申请热线:editor@e-works.net.cn tel:027-87592219/20/21。
e-works
官方微信
掌上
信息化
编辑推荐
新闻推荐
博客推荐
视频推荐