e-works数字化企业网  »  文章频道  »  产品创新数字化(PLM)  »  CAE

2013PLM征文:金属燃油箱形貌优化设计方法研究

2013/11/13    来源:e-works    作者:吕兆平  唐基荣  徐靖  卓义盛      
关键字:形貌优化设计  OptiStruct  金属燃油箱优化设计  
本文提出了一种在OptiStruct软件中对金属燃油箱进行形貌优化,进而获得燃油箱加强筋布置的新方法。采用该方法通过软件的自动优化计算获得燃油箱加强筋的布置最佳方案,分析结果表明对采用该方法设计的燃油箱模态有显著提高。该方法为金属燃油箱加强筋的布置提供了快捷、有效的途径。

0 前言

    对于薄壁钣金支架零件,在钣金型材上冲压加强筋,在材料成本不变的前提下是提高支架结构强度的主要手段,因此确定加强筋布置方案是支架设计开发的关键环节之一。目前,有限元技术在各种汽车支架的优化设计中已经得到广泛应用[1],但由于零件具体形状、安装位置的不同,支架上加强筋的布置也各不相同。根据有限元分析结果对加强筋布置方案进行改进大多只能凭借设计者的经验,得到的往往只是可行性设计而不是最优设计,如何借助先进的设计理念及分析工具获取支架加强筋的最优布局是设计者们正需要解决的问题。

    形貌优化是一种针对薄壁板形结构中寻找最优的筋分布的概念设计方法,该方法同样适合应用于钣金型材冲压件的设计。目前,借助商业有限元软件的形貌优化设计已经在发动机油底壳的改进设计中得到了初步应用[2][3],但在燃油箱壳体设计应用及加强筋参数设置等方面的研究还少见报道[4]。 本文以形貌优化在某新车型金属燃油箱下壳体设计中的应用进行研究,寻找由形貌优化到燃油箱壳体加强筋布置最优的解决方案。

1 原始概念设计有限元模型建立及模态分析

    1.1 燃油箱几何模型的导入、重构及修整

    将工程师提交的初版燃油箱的几何模型导入HyperMesh中。

    由于燃油箱上下壳属薄壁零件,导入的UG模型需要利用Geom面板(几何面板)中的MidSurface功能对其进行中面的抽取。抽取的中面存在缝隙、重叠、错位等缺陷,需要利用Geometry Cleanup(几何清理)功能消除以合并自有边,然后消除不必要的细节,这可以提高整个划分网格的速度和质量,减少计算误差。

    1.2 燃油箱壳体几何模型的网格划分

    几何清理工作做完以后,就可以进行网格的划分。网格划分完后须进行单元质量检查,HyperMesh软件可自动找出错误单元和质量差的单元,这些单元在计算和优化时会产生错误,使计算或程序不能继续或得出错误结果。检查的内容包括:单元最小尺寸、单元最大长度、长宽比、四边形最大角、四边形最小角、三角形最大角、三角形最小角、对角线余角、雅可比和三角形占所有单元的百分比。选择其中一项后,不合格的单元会以红色显示,质量差的单元会以黄色显示,质量较好的单元则以透明显示。HyperMesh对检查出的有颜色的单元提供了强大的质量修复功能,包括:place node(移动节点)、swap ease(交换边界)、node optimize(节点优化)和element optimize(单元优化)功能。

    对完成的燃油箱有限元模型四个安装点施以固定约束,输入ST14材料的杨氏模量2.1GPa,泊松比0.3及质量密度7.85g/cm3,得到初始概念设计数模的模态分析有限元模型见图1。

燃油箱原始概念有限元模型

图1 燃油箱原始概念有限元模型

    1.3 初始模型燃油箱模态分析

    利用图1所示模型,求解得到燃油箱前五阶模态,其中1阶模态为58HZ,在邮箱下壳体中部(图2)。由于汽车在行驶中,路面的激励频率一般低于50HZ,而国标GB18296规定的振动试验频率为30HZ,考虑到计算误差及未考虑到油液质量的影响,因此公司企标把燃油箱的一阶模态定义为大于80HZ。从分析结构来看无法满足要求,需要对下壳体的结构进行优化。

燃油箱模态1阶振型图

图2 燃油箱模态1阶振型图

责任编辑:程玥
本文为e-works原创投稿文章,未经e-works书面许可,任何人不得复制、转载、摘编等任何方式进行使用。如已是e-works授权合作伙伴,应在授权范围内使用。e-works内容合作伙伴申请热线:editor@e-works.net.cn tel:027-87592219/20/21。
e-works
官方微信
掌上
信息化
编辑推荐
新闻推荐
博客推荐
视频推荐