e-works数字化企业网  »  文章频道  »  产品创新数字化(PLM)  »  CAE

基于OptiStruct的白车身拓扑优化研究

2015/8/3        作者:张继游      
关键字:OptiStruct  白车身  拓扑优化  
本文采用优化工具OptiStruct,以柔度最小化为目标建立了汽车白车身拓扑优化模型,分析工况包括弯曲刚度、扭转刚度、正面碰撞、后面碰撞和侧面碰撞,目的是考察拓扑优化技术在车身架构前期开发中应用的可行性。

1 概述

    中国汽车自主品牌经过近十多年的发展,开发水平从早期的抄袭模仿,逐步转向正向设计,车型研发的领域逐步提前到前期开发阶段。在车身架构的前期开发阶段,可以利用拓扑优化技术探索载荷传递路径,从而为后期的工程开发提供合理的车身架构,避免出现重大的设计失误,同时降低设计成本,提高研发速度。本文根据某车型的上一代车身架构,在HyperMesh中建立拓扑优化模型,利用拓扑优技术获取前期车身架构,拓扑优化工具采用OptiStruct求解器,目的是考察拓扑优化技术在车身架构前期开发中应用的可行性。

2 模型描述

    根据某车型的上一代白车身有限元模型(如图1所示),建立白车身拓扑模型(如图2所示),由于水箱横梁总成对本次拓扑优化分析工况(刚度工况和碰撞工况)的影响较小,该部分总成没有建立拓扑模型。考虑到整车在前后碰撞过程中需要纵向刚度比较好,因此将前后纵梁总成直接设定为非设计空间,其余网格均作为设计空间。为了方便优化过程控制,分为若干区域并分别赋予不同的属性,再施加约束和载荷,建立拓扑优化的有限元模型,如图2所示。

图1 白车身有限元模型

图1 白车身有限元模型

图2 白车身拓扑模型

图2 白车身拓扑模型

3 拓扑优化

3.1优化目标与约束

    本研究的优化的目标为各个工况下白车身的柔度最小化,设计变量为单元密度,约束分别是体积分数、单元最小尺寸约束、对称约束和拔模约束。其中,体积分数是指当前迭代步设计空间体积与初始设计空间体积的比值,而对称约束是指相对于车身XZ平面,车身结构左右对称,车身地板、顶棚、B柱和防火墙部件的单元添加拔模约束。

    白车身拓扑优化工况包括刚度工况和碰撞工况。其中,刚度工况包括弯曲刚度工况和扭转刚度工况,碰撞安全工况包括正面碰撞工况、后面碰撞工况和侧面碰撞工况。碰撞工况对车身的影响都是大变形、非线性的,还有接触力存在。目前拓扑优化与有限元方法相结合的方法并不成熟,尤其针对白车身拓扑优化问题,因此必须将这类非线性工况等效为线性工况。本研究在HyperMesh前处理工具中建立上述拓扑优化工况,并采用OptiStruct求解器进行拓扑优化,最后用HyperView后处理工具进行拓扑优化结果分析。

    一般来说,不同的载荷工况将得到不同的结构拓扑。传统的多目标优化问题采用线性加权和法,将多目标问题转化为单目标问题求解,但对于非凸优化问题来说,该方法不能确保得到所有的Pareto最优解。本研究多目标拓扑优化采用的方法是折衷规划法(Compromise Programming Approach)。多工况拓扑优化的数学方程如下所示:

公式1 多工况拓扑优化的数学方程

公式1 多工况拓扑优化的数学方程

责任编辑:吴星星
e-works
官方微信
掌上
信息化
编辑推荐
新闻推荐
博客推荐
视频推荐