e-works数字化企业网  »  文章频道  »  产品创新数字化(PLM)  »  CAE

无网格法,会是CAE未来的发展趋势吗?

2019/3/26    来源:e-works    作者:e-works  吴星星      
关键字:无网格  CAE  
无网格法也代表了CAE未来的一种发展趋势,相信未来会有更多的无网格法会被引入到更多商业软件中,以破解传统网格难以分析的数值模拟问题。

    引言:由于传统的基于网格的算法,存在形成网格时的计算成本高、应力精度低、自适应分析困难、对某些问题分析的局限性(如冲压变形等大变形问题、裂纹扩展问题、流固耦合问题、爆炸问题)等问题,而无网格法可以避开网格重构,有效解决网格算法难以分析的数值模拟问题,因此,无网格法越来越受到人们的重视。

无网格法的前生今世

    随着计算技术和计算机计算水平的不断提高,数值模拟方法逐渐应用到了力学的各个领域。网格离散法,包括有限元、有限差分、有限体积等方法,作为出现较早的数值模拟方法,广泛地应用到了力学的相关计算中。

    但是,网格数值模拟方法并非完美无缺,也存在一些难以解决的问题。例如在流体力学模拟中,由于流体力学模拟是个复杂的过程,存在极端变形、自由液面以及物质运动交界面等问题,在应用网格数值模拟时,会出现网格扭曲导致计算不收敛或者产生很大的计算误差;再如在模拟大变形问题时,包括高速碰撞、水底爆炸现象、裂纹动态扩展、流固耦合以及金属冲压成型等,用网格数值模拟方法也不能得到理想效果。无网格法正是在这些背景下发展起来的。

基于无网格Galerkin法的锻造模型

基于无网格Galerkin法的锻造模型

    无网格法(Meshless Method or Mesh-Free Method)最早出现于19世纪70年代,这时候发展较为缓慢。1977年,Lucy L B、Gingold R A等人首次提出了光滑质点流体动力学方法(SPH),并将该方法成功应用于天体物理的领域中。1981年,Lancaster较为系统地研究了移动最小二乘法。

无网格法——基于SPH算法的案例

无网格法——基于SPH算法的案例

    20世纪90年代,国际计算力学界掀起了无网格法的研究热潮,涌现了10余种无网格方法,主要包括:辐射元法(DEM)、无网格Galerkin法(EFG)、重构核粒子法(RKPM)、有限点法(FPM)、Hp云团法(Hp clouds)、径向基函数法(RBF)、无网格局部Petrov Galerkin法(MLPG)、单元分解法(PUM)、物质点法(MPM)等,它们之间的区别主要在于试函数的选择和微分方程的等效形式

    相比国外计算力学研究者对无网格法的大量研究,国内对这方面的研究较少,但无网格法依然在不断发展之中。尤其最近几年,由于无网格法在计算过程中不需初始划分和重构网格,直接借助于离散点来构造函数,相较于传统网格算法,无网格法不仅可以保证计算的精度,而且可以减小计算的难度,尤其在一些特殊问题上,如模拟大变形问题——水下爆炸、海浪冲击及激波管等,具有显著优势,众多的研究人员逐渐将目光放在了无网格法的研究上

    截止到现在,国际和国内学者已经提出了多种不同的无网格方法,其基本思想都是在问题领域内布置一系列的离散节点,然后采用一种与权函数或核函数有关的近似,使得某个域上的节点可以影响研究对象上的任何一点的力学特性,进而求得问题的解

责任编辑:程玥
本文为e-works原创投稿文章,未经e-works书面许可,任何人不得复制、转载、摘编等任何方式进行使用。如已是e-works授权合作伙伴,应在授权范围内使用。e-works内容合作伙伴申请热线:editor@e-works.net.cn tel:027-87592219/20/21。
e-works
官方微信
掌上
信息化
编辑推荐
新闻推荐
博客推荐
视频推荐