图1 地下走管方案示例
1 BIM在数据中心建设行业中的应用
1.1 传统模块化数据中心建设行业特点
1)一体化分布式部署:批量复制、按需扩展、三房归一
将UPS&电池房+空调房+IT机房三房合一,形成新型IT机房,在建设过程中提出标准统一、接口统一的新要求。机房建设从整体建设改为模块级建设之后,由20个模块构成的数据中心在下单后13周后便实现交付使用,快速的IDC部署能力逐步适应了建筑
信息化的发展。
2)模块与土建:一次规划、分期投资、快速部署
数据中心在建设过程中采用了土建与IT分离、主体与水电同步建设、各模块按需部署的方式。各模块组件在采用标准化产品的基础上预留接口,可以满足快速生产、快速发货、快速组装的要求,大幅度提高ROI,Capex有效降低10%。
3)模块内部件与通道结构件:灵活应对未来变化
一般来讲,数据中心的生命周期为10-15年,
服务器的生命周期为3-5年,随着服务器配置的改变,对微模块采用调整内部供
配电与制冷配比的方法,提升微模块使用的灵活性和可用性。
4)密封通道+冷冻水行级空调:降低PUE至1.5
密封通道的设计可以有效隔离冷热气流,实现行级空调就近制冷、就近转移热量、迅速消除局部热点的功能,从而大大提高制冷效率。通过现场测试,PUE可降低至1.5,OPEX降低了35%-40%。
5)智能管理架构:单模块监控与集群监控可提高运维效率
在每个微模块上部署一个触摸屏,并与交换机进行连接,从而共同负责该模块的监控管理。在此基础上,连接北向SNMP接口,采用基于微模块的集群管理,使得界面的清晰度得到保障,进而提高运维效率。
1.2 BIM在各阶段的应用
数据中心建设过程中普遍存在参与方专业不同、办公地点分散、沟通效率低以及图纸更新不及时等现象。采用BIM技术,设计师可将模型上传至协同管理平台,各方基于同一模型进行交流,提交表更模型,从而保证模型统一性;业主方可通过平台进行监控、浏览、批注、变更或发布任务等;各参与方可随时随地通过PC或移动端查看图纸和模型,减少了数据损失和沟通成本,大大提高了非专业人士的参与度。
2)设计优化阶段
为充分满足机房环境条件的要求,初设阶段采用精密空调机,其独具送风量大、换气次数高(30~60次/t)、可以使机房内形成整体气流循环、所有的设备冷却均衡等优点,这些是普通空调所不具备的。
但精密系统管径较大(主管道DN150~DN250),会使走廊空间紧张,此时则可采用地板下走管方案(见图1),设计过程中与土建装修进行积极的沟通协同,预留足够的地板空间。各专业在设计过程中通过三维模型进行协同设计、验证,实现了信息无损交流,发现问题及时解决,以得到最优设计方案
3)出图
通过前期准备以及二维模型统一表达,实现了三维立体模型与二维平面图纸的相互转化。各工艺管线、机房设备平面图以及相关节点图、机电安装土建预留和预埋条件要求图、管线密集部位管线布置详图,均可生成相应图纸;模型变更剖面图、大样图均可实现自动更新,大幅度提高工作效率。
2 BIM在数据中心建设行业的优势
通过BIM技术在综合数字环境中对信息进行持续更新,可实时访问信息数据,方便各参与方全面及时地了解项目。数据中心在设计、施工和管理过程中产生的数据能够加快决策进度、提高决策质量,起到提高质量、增加收益的效果。
2.1 快速算量,精度提升
建立BIM数据库之后,与5D数据库进行关联,可提高工程量计算的精确性,保证施工预算的精度与效率。BIM数据库达到构件级的数据粒度,通过提供满足项目各参与方所需的数据,可以有效地提高施工管理效率。
2.2 虚拟施工,有效协同
在三维可视化的基础上添加时间维度,通过模拟施工实现施工计划与实际进度的直观对比。通过有效协同,便于各参与方充分了解项目的整体情况。BIM技术结合施工方案模拟、视频监测,可降低施工过程中的返工率和整改率,避免安全隐患,保证建筑质量。
2.3 碰撞检查,减少返工
在设计阶段利用BIM技术进行三维可视化设计,通过碰撞检查完成对工程设计方案、净空设计方案、管线排布方案的优化(见图3-4),利用优化后的方案进行施工交底,减少了施工阶段的错误,降低了返工可能性,在避免损失的同时有效提高了施工质量以及与业主沟通的效率。
图3 碰撞检测示例一图
本文为授权转载文章,任何人未经原授权方同意,不得复制、转载、摘编等任何方式进行使用,e-works不承担由此而产生的任何法律责任! 如有异议请及时告之,以便进行及时处理。联系方式:editor@e-works.net.cn tel:027-87592219/20/21。