e-works数字化企业网  »  文章频道  »  基础信息化  »  网络与安全

汤晓鸥:人工智能在中国有点过热了,我想泼泼冷水

2017/4/20    来源:AI科技评论    作者:佚名      
关键字:人工智能  汤晓鸥  
我们不能过于依赖人工智能,不能把什么事都交给它,它的作用毕竟还是很有限的。
 
大家中午好!非常荣幸能够与这么多业界精英同台演讲。
 
 
    大家中午好!非常荣幸能够与这么多业界精英同台演讲。
 
    三年前,我常常跟投资人、跟一些企业家讲人工智能、讲深度学习,但那个时候大家还不理解,也都不太关心。后来,谷歌推出了阿尔法狗,人工智能就火了。除了受阿尔法狗事件的影响之外,也得益于美国五大人工智能巨头形成的联盟。中国在双创活动中也选择了两家人工智能的领军企业,一家是百度,另外一家是商汤,这是两家中国智能的代表。所以,张维总提到了高估值的商汤,我认为并不高,应该是低估值的商汤。
 
    但是,现在大家都在讲人工智能,给我的感觉是,人工智能在中国有点过热了,所以我今天想为大家泼泼冷水。
 
    一、人工智能的作用是有限的
 
    人工智能是什么呢?应该说,它跟A股很像。如果说上海是中国的A股市场所在地,那么三年前,人工智能相当于A股市场的三千点以下,没有人买。而今年,这个指数飙到了六千点。在这种情况下,大家是买还是不买呢?
 
    有的时候,我们会把一些事看得太过神奇。这与彭剑锋教授所讲到互联网的发展是同样的道理,人工智能也不过是一个辅助性的工具,并不是事情的全部。这个工具本身并不能产生独立的价值,而一定是在跟各个行业相结合以后,为各个行业生产效率的提升来服务的。我认为,饭要自己亲自吃,厕所也要自己亲自上,锻炼身体也一定要亲自去。我们不能过于依赖人工智能,不能把什么事都交给它,它的作用毕竟还是很有限的。
 
    十年前,我的实验室(雷锋网(公众号:雷锋网)注:即微软亚洲研究院视觉计算组,汤晓鸥为时任负责人)做出了人脸识别系统,里面涉及到一些图像处理、特效处理、自动分割以及交互等内容,也越来越好玩。
 
    图像处理源于2008年的北京雾霾。当时正在召开奥运会,因为雾霾的原因,新闻图片发出去会令人感到尴尬。所以,我们定制了一些功能,用了一些算法,可以把图像里的雾去掉。我们这次会议的地点在三亚,在这样的碧海蓝天之间,这个技术是用不到的。但今天的题目是迷雾航行,虽然我们不再需要去除新闻图片中的雾霾了,但就目前大家对人工智能的认识来看,我觉得还是把认识的“雾”去掉,然后航向才能明确。
 
    那么,在人工智能方面怎么去雾,怎样才能真正踏踏实实地做点事呢?
 
    我们知道,雾的浓度和距离是成比的。所以在新闻图片中,我们先是把三维算出来,然后把雾去掉,并且还能把背景模糊化。最后,一张非常糟糕的照片被我们做出了单反的效果。这一技术所形成的文章得到了2009年的最佳论文奖,我还是蛮骄傲的。但是,这一技术的产生,是在2011年以前,有我们十几年的积累做基础,也是在深度学习这个算法产生之前的事。我想说的是,和所谓的人工智能一样,这些技术都不是一夜之间发生的,而是一个长期艰苦积累的过程。并且是我们所积累的几百项工作中比较出色的部分。
 
    二、人工智能与深度学习是一个长期积累的过程
 
    1、人工智能发展“简史”
 
    目前,人工智能目前发展到了什么程度呢?根据我二十年来做的工作,我总结一下人工智能发展的简单历程。
 
    在国际范围内,人工智能最早诞生于1956年。从那以后,人工智能的发展势头不断起起落落,也曾喧嚣,但最终都归于平静,并没有真正发掘出对人类社会生活有益的功能。但是在2011年,诞生于2006年的“深度学习”的算法产生了效用。从那时开始,人工智能开始具体应用于很多的单向领域或者说具体的行业,并且开始超越了人的水平。
 
    对于人工智能的发展,几个主要的“玩家”起到了决定性的推动作用。在软件方面,谷歌和Facebook进行了大量的投入,很多创新都是从这两家公司产生的。为什么是它们?因为它们有大量的数据要处理,它们有刚性的需求。同时,它们也有大量的资金投入。谷歌去年一年在人工智能领域的研发投入是120亿美金。阿尔法狗几次挑战李世石,还有相应的宣传,都是大量投入的结果,并不是简单的炒作就能够达成的。同时,Facebook也在这一领域做出了大量的投入。
 
    在硬件方面,包括深度学习的算法、计算平台几乎都是GPU上做起来的。 
 
    如果说人工智能是一条红线,那么,深度学习在某种意义上来说就是这个红线的引擎,而大数据就是它的原料。目前,人工智能的大部分技术,都是由深度学习算法来支撑的。
 
    2、深度学习的突破:在垂直领域落地 
 
    深度学习发展出来的时间很短。在2011年,它跟微软进行了合作,在语音识别技术上取得了重大突破。当时,微软首先推出的是应用方面的驱动。在那以后,因为有了多年大数据的积累,又组织了更多在语音识别方面有相当实力的人,所以就有了更加重大的突破,相当于在一年之内做了十年的事。 
 
    我们从原来人脑设计参数的人工智能转变为由大数据驱动的人工智能,实际上是在某些领域取得的技术突破,主要是在某个特定的领域超过了人。比如说,最早用深度学习做出来的语音识别系统大获成功。在人脸识别、图像分类、阿尔法狗、自动驾驶、医疗技术等几个方面都有着很大程度的突破。这些学术方面的突破,使计算机超越了人类以后,就相当于在垂直领域迈过了一道槛。而这道槛之后,人工智能技术终于可以落地了,终于可以替换一些人工成本,来帮助产业提高效率了。
 
    所以,我们看到的人工智能涉及到了很多具体的领域,有的与产业结合得很好,有的则刚刚开始,当然也有一些完全是出于炒作。总之是参差不齐,或者说是各有千秋。 
 
    3、人工智能开始值钱了 
 
    目前,人工智能主要有三个战场:一个是语音识别,相对来说比较成熟;它之后是自然语言,在这个领域还有很多事要继续研究,非常难;现在的主战场是图像,就是眼睛的智能。怎样用眼睛识别出环境与物体,这也是非常困难的事。
 
    2012年,Hinton在图像识别方面也取得了重大突破。在此之前,Viewdle拥有这个领域最大的订单,但Hinton的成果一下把前人甩出了10年的距离,并在当时引起了很大的轰动。
 
    在此之后,仅仅过了4个月,谷歌花了5千万美金收购了它。这个惊人的举措令我们认识到,人工智能开始值钱了。接着,谷歌又花了6.6亿美金收购了一家公司。这家公司只有12个人,没有什么特别的产品,主要是研究如何用深度学习来下棋。当时我们觉得它的价格过于昂贵了,但实际上这个公司诞生了很多算法,所以仅仅过了一年多以后,他们用阿尔法狗下了一盘举世震惊的棋,一下子就把投入的钱赚回来了。
 
    2013年,Facebook聘请了另外的团队,在纽约建立了人工智能实验室。后来,通用、因特尔等大企业也纷纷进入到这一领域,并且也开始收购一些公司。
 
    三、我们在做什么
 
    在这期间,我们做了几件比较有影响力的事。2014年,我们首次突破了人脸识别技术(ImageNet,一个计算机视觉系统识别项目,是目前世界上图像识别最大的数据库),在2015年的时候取得了全球第一的成绩,2016年在五项里取得了三项世界冠军。与Alphago一样,我们也做到了机器的算法超过了人类,在某个特定的领域可以把人打败。
 
    这其实并不神奇,因为汽车早已在赛跑的领域打败了人类。可以说,在某个特定领域打败人类不是什么了不起的事。但是人们普遍认为,人工智能就是机器人,它可以超越人脑并控制人类。但事实上,这是非常遥远的事情。我们真正在一线做人工智能研发的人是不敢这么想的,只是致力于让机器做事先设计好的特定任务,绝不会有另外的任务附加给它。我们经常开玩笑说,李世石在跟阿尔法狗下棋之前,也许早已在赌博公司下了赌注,赌自己输。但是,阿尔法狗想不到这一点,所以尽管它以为自己赢了,但实际上它输了(笑)。
 
    深度学习有三个大核心要素:一是深度学习的算法设计;二是高性能的计算平台;三是大数据。 
 
    2011年,我们实验室的几十个博士、教师开始研究深度学习。这是学术界最早涉猎深度学习的华人团队。2014年,我们又打败了Facebook,在人脸识别技术方面超过了人眼识别。当时,一般人眼识别的准确率是75%强,但Facebook做到了97.3%。但我们的团队连续做了四五个算法,最后从97.4%一路做到了99.55%,在与Facebook和谷歌的竞争中取得了好成绩。
 
    2014年9月份,我们又参加了一个世界级的大赛,与包括百度、谷歌、牛津、微软在内的37个世界顶级团队竞争,取得了全球第二的成绩,谷歌是第一。2015年,组委会在比赛中加入了视频。在视频的检测中,我们取得了全球第一的成绩。2016年,我们在五项比赛里取得了三项第一名。 
 

责任编辑:李欢
本文为授权转载文章,任何人未经原授权方同意,不得复制、转载、摘编等任何方式进行使用,e-works不承担由此而产生的任何法律责任! 如有异议请及时告之,以便进行及时处理。联系方式:editor@e-works.net.cn tel:027-87592219/20/21。
e-works
官方微信
掌上
信息化
编辑推荐
新闻推荐
博客推荐
视频推荐