e-works数字化企业网  »  文章频道  »  基础信息化  »  存储

存储产业的颠覆者 一篇文章看穿3D Xpoint的秘密

2017/6/3    来源:硬件十万个为什么    作者:佚名      
关键字:存储  3D Xpoint  
回顾存储的发展历程,3D Xpoint是自NAND Flash推出以来,最具突破性的一项存储技术;由于具备以下四点优势,3D Xpoint被看做是存储产业的一个颠覆者。
    目前英特尔和美光对3D XPoint应用的物理特性闭口不谈,资料更是匮乏。一些不具名的介绍资料显示,3D XPoint使用的标记数据状态的物理值不是业内常用的电压、也不是电流,更不是目前还在实验室内的磁极,而是电阻。
 
    回顾存储的发展历程,3D Xpoint是自NAND Flash推出以来,最具突破性的一项存储技术。由于具备以下四点优势,3D Xpoint被看做是存储产业的一个颠覆者:
 
    (1)比NAND Flash快1000倍;
 
    (2)成本只有DRAM的一半;
 
    (3)使用寿命是NAND的1000倍;
 
    (4)密度是传统存储的10倍;
 
    而得益于这些优势,3D Xpoint能被广泛应用在游戏、媒体制作、基因组测序、金融服务交易和个体化治疗等领域。以上只是3D Xpoint的一些应用示例。但从以上介绍,我们可以看出,3D Xpoint未来的应用非常有潜力。
 
    目前存储器存在的一些问题
 
    存储器的性能是PC设备上目前的短板。这一点从很多用户由HDD更换为SSD后,感觉像是“换了一个电脑”就能体现出来。HDD目前的传输速度往往在200MB/s以内,寻道时间约为10ms级;SSD传输速度为数百MB/s到几GB/s,寻道时间约为0.1ms以内;更快的内存带宽为几十GB/s,延迟时间低至ns级。再向上还有更高速的缓存、寄存器等设备。
 
    DRAM:易失性难以解决
 
    抛开和处理器紧密相关的高速缓存和寄存器不说,先来看内存和外部存储这两个级别。目前我们使用的内存主要是DRAM。DRAM的核心问题是易失性,其它方面的表现优秀——比如在性能上DRAM的延迟很低(纳秒级别)、带宽较为充裕;寿命方面由于原理所致,DRAM寿命很长。不过,DRAM的存储需要不停供电,断电就会丢失存储的数据。从DRAM被发明出来到现在,DRAM只是不断地在预取值和总线上进行调整,核心的存储架构其实变化不大。
 
    NAND:寿命、延迟不尽如人意
 
    再来看目前广泛应用于存储设备的NAND闪存。NAND闪存分为SLC、MLC、TLC等多种分支颗粒。从寿命上说,NAND是有平均读写次数的寿命的,即使是性能最好的SLC NAND颗粒,其寿命也比DRAM小得多。虽然可以通过设置缓冲空间、平衡磨损算法、提前设置寿命预警来确保NAND不会在使用时“掉链子”、引发数据丢失,但寿命依旧是NAND在使用中不可回避的问题。
 
    此外,受制于存储原理,NAND延迟较高,尤其是写入时存在充电时间,怎么也快不起来,目前只能被用作外部存储设备。但在今天,由于之前有性能更低的HDD机械硬盘的存在,基于NAND颗粒的SSD仍旧让用户感受到了性能的巨大提升。
 
 随着制程提升,NAND的容量正在迅速提升,但寿命和延迟等问题,并没有革命性的变化。
 
    ▲随着制程提升,NAND的容量正在迅速提升,但寿命和延迟等问题,并没有革命性的变化。
 
   NAND工作原理图,绝缘浮置栅极是其存储数据的核心。
 
    ▲NAND工作原理图,绝缘浮置栅极是其存储数据的核心。
 
    性能鸿沟:PC架构的问题
 
    所谓性能鸿沟,就是上下两级系统存在较大的性能差距,使得级次缓存的设计方案很难体现出最佳的效果堪称天堑;在NAND和DRAM上,这个鸿沟相比DRAM和HDD之间的性能鸿沟略有缩小,但是本质上的变化并不明显。举例来说,NAND设备目前的最快速度差不多在2GB/s~3GB/s,处理器的内存带宽已经突破50GB/s大关,两者间差了一个数量级。延迟上,DRAM只有十几纳秒,相比NAND的约一百微秒,快了好多个数量级。
 
    实际上,内存和外部存储之间的性能差距过大,已经成为影响用户体验继续提升的瓶颈。所以研究机构一直在提出很多解决方案,试图解决这个鸿沟,比如相变存储器、赛道存储器、全新的高速磁存储设备等。但这些技术不是还深藏在实验室中,就是刚在PPT上公诸于众。到了去年,作为存储业界的领军企业之一的英特尔和美光,终于将其中一种全新的存储技术推向了前台,这种技术同时拥有高性能和非易失性两种特性,这就是今天的主角:3D XPoint!
 
  内存的基本技术结构也已经很久没有革命性的变化。目前最快的DDR4内存,仍旧只能充当暂存器。
 
    ▲内存的基本技术结构也已经很久没有革命性的变化。目前最快的DDR4内存,仍旧只能充当暂存器。
 
    3D XPoint的原理
 
    目前英特尔和美光对3D XPoint应用的物理特性闭口不谈,资料更是匮乏。一些不具名的介绍资料显示,3D XPoint使用的标记数据状态的物理值不是业内常用的电压、也不是电流,更不是目前还在实验室内的磁极,而是电阻。
 
    存储产业的颠覆者 一篇文章看穿3D Xpoint的秘密
 
    3D XPoint的工作原理与NAND存在着根本性的不同。NAND通过绝缘浮置栅极捕获不同数量的电子以实现bit值定义,而3D XPoint则是一项以电阻为基础的存储技术成果,其通过改变单元电阻水平来区分0与1。
 
    存储产业的颠覆者 一篇文章看穿3D Xpoint的秘密
 
    3D XPoint的结构非常简单。它由选择器与内存单元共同构成,二者则存在于字线与位线之间(因此才会以‘交叉点’来定名)。在字线与位线之间提供特定电压会激活单一选择器,并使得存储单元进行写入(即内存单元材料发生大量属性变化)或者读取(允许检查该存储单元处于低电阻还是高电阻状态)。猜测,写入操作要求具备较读取更高的电压,因为如果实际情况相反,那么3D XPoint就会面临着上在读取存储单元时触发大量材料变化(即写入操作)的风险。英特尔与美光双方并没有透露内部读取/写入的具体电压数值,不过根据得到的消息,其电压值应该低于NAND——后者需要利用约20伏电压来编写/擦除以创建出足够通过绝缘体的电场电子隧道。而这种较低的电压要求自然也能够使得3D XPoint拥有比DRAM以及NAND更低的运行功耗。
 
    存储产业的颠覆者 一篇文章看穿3D Xpoint的秘密
 
    顾名思义,3D XPoint的存储单元可以以3D方式进行堆叠,从而进一步提升存储密度。目前第一代晶粒样品使用的是双层设计方案。双层听起来实在有些寒碜,特别是考虑到目前的3D NAND芯片已经拥有32层,且逐步开始向48层进军。不过3D XPoint的构建方式完全不同,直接进行层数比较显然并不科学。
 

责任编辑:李欢
本文为授权转载文章,任何人未经原授权方同意,不得复制、转载、摘编等任何方式进行使用,e-works不承担由此而产生的任何法律责任! 如有异议请及时告之,以便进行及时处理。联系方式:editor@e-works.net.cn tel:027-87592219/20/21。
e-works
官方微信
掌上
信息化
编辑推荐
新闻推荐
博客推荐
视频推荐