e-works数字化企业网  »  文章频道  »  基础信息化  »  大数据

人工智能创业的6大核心问题

2018/2/19    来源:360大数据    作者:程浩      
关键字:人工智能  AI创业  
首先如果今天大家选择创业,我建议更应该关注人工智能,而非互联网。
    首先如果今天大家选择创业,我建议更应该关注人工智能,而非互联网。为什么这么讲? 
 
    1. 互联网的流量红利已经消失
 
    以 PC 来说,全球 PC 出货量连续 5 年下滑。大家知道国内最后出现的一个 PC 互联网独角兽是谁吗?是知乎,大概是 2011 年初推出,这么多年过去,再也没有 PC 互联网的独角兽出现。做个类比,我们知道 2015 年移动互联网的渗透率和竞争程度和 2011 年的 PC 互联网类似,以此类推,2015 年以后再做移动 APP,也很难出独角兽了。
 
    毕竟中国连续两年手机出货量都在 5 亿多台,增长放缓,代表无线流量基本已走平,你多卖一台,我就少卖一台,是存量竞争。今天创业者再做一个纯互联网的 APP,投资人问的第一个问题就是你怎么获客。因为现阶段流量格局已定,首屏就那几个 APP。
 
    2. 互联网+的机会同样有限
 
    主要在于互联网最大的价值,是解决信息不对称和连接。所以对于电商特别有价值。淘宝用皇冠、钻石等信用体系解决了信息不对称,同时又把全国有这么多买家和卖家连接在一起。这个是互联网的价值。
 
    但很多行业信息和连接并不是痛点。拿医疗举例,中国三甲医院的大夫就那么多,你把全国 13 亿人民都和这些大夫连接上了也没用,因为一个医生一天还是只能看那么多病人。互联网并没有提高医生看诊的效率。在诸如餐饮、医疗这些传统领域,互联网的帮助是很有限的。
 
    也包括滴滴打车,互联网解决了打车难的问题,但是没解决打车价格的问题。事实上,补贴去掉之后,大家都发现了滴滴一点都不便宜,道理很简单——不管是专车还是出租车,还是需要由人来开,人工成本降不下来,就不可能便宜。
 
    3. 真正能够提高社会生产力,解决供需关系不平衡的就是人工智能
 
    人工智能将给社会生产力带来的提高,以及对人类带来的影响将远远超过互联网。
 
    还是拿医疗来说,很多基层医院水平不高,那未来完全可以通过人工智能来辅助医生读 CT、X光等医疗影像。像今年,IBMWatson 对皮肤黑色素瘤的诊断,准确率已提高至 97%,远远超过了人类专家 75%-84% 的平均水平。
 
    未来,人工智能无论是在无人车、机器人、医疗、金融、教育还是其他领域,都将爆发巨大的社会效益,这点毋庸置疑。
 
    我建议现在的创业者更应该关注人工智能领域的创业机会。
 
    第二个问题:人工智能 vs 人工智能+
 
    人工智能主要分三层。最底层是基础架构(Infrastructure),包括云计算、芯片以及 TensorFlow 这样的框架。在基础层之上是中间层,叫通用技术(EnablingTechnology),例如图像识别、语音识别、语义理解、机器翻译这些。
 
    基础层和中间层,是互联网巨头的必争之地。比如芯片领域,Intel、英伟达、高通都投入巨资,竞争极其激烈。同样云计算、框架也是一样,都不是小公司能够涉足的领地。
 
    现在对于中间层的通用技术,BAT 也极其重视。因为大家都相信人工智能是下一波工业革命浪潮。对腾讯、阿里、百度这些巨头来讲,要想在大浪中屹立不倒,必须要构建出人工智能的生态系统(Ecosystem)。而核心就是要依靠这些 Enabling Technology 技术。
 
    相比创业公司,BAT 的最大优势是什么呢?第一,不缺数据;第二,为了构建自己的生态系统,未来通用技术一定全部是免费的;第三,虽然通用技术免费,但 BAT 有羊毛出在身上的猪机会。这是典型的互联网打法。
 
    这里的猪是什么?猪就是云计算。例如百度的 ABC 策略,分别代表人工智能(AI)、大数据(Big Data)和云计算(Cloud Computing)。AI 我可以不赚钱,开放给大家,那么大家想享受我的服务,就来买我的云吧。
 
    而对于创业企业来说,只做图像识别、语音识别、语义理解、机器翻译这些通用技术,指望通过 SDK 卖钱,未来路会越来越窄,特别是 BAT 都免费的压力下。
 
    所以从这个角度讲,创业公司做下面两层风险比较大。我认为创业公司的机会在最上层,就是拿着下两层的成果去服务垂直行业,也就是我们所谓的人工智能+。
 
    第三个问题:人工智能 + vs + 人工智能
 
    深入垂直行业的人工智能+,又可细分为两类情况:即“人工智能+行业”和“行业+人工智能”,他们间有明显的区别。
 
    “AI+ 行业”简单讲就是在 AI 技术成熟之前,这个行业、产品从未存在过。比如自动驾驶,亚马逊的 Echo 智能音箱、苹果的 Siri 语音助手。在人工智能技术未突破前,不存在这样的产品。因为 AI,创造出了一条全新的产业链。
 
    “行业 +AI”就是行业本身一直存在,产业链条成熟,只是以前完全靠人工,效率比较低,现在加入 AI 元素后,使得行业效率有了明显提高。比如安防、医疗等领域。
 
    客观讲,这两个类别都有创业机会。但“AI+ 行业”,因为是一条新的产业链,创业公司与互联网巨头实际是处在同一起跑线上。巨头们坐拥数据优势。所以从这个角度,“行业 +AI”相对对创业公司更为友好,也更容易构建出壁垒。
 
    我认为,未来行业壁垒才是人工智能创业最大的护城河。因为每个行业都有垂直纵深, 尽管 BAT 技术好一点、并不关键。拿医疗 +AI 举例,什么最重要?大量准确的被医生标注过的数据最重要。没有数据,再天才的科学家也无用武之地。
 
    但在国内,这个医疗数据拿出来非常困难。所以 BAT 做医疗一点优势都没有,因为他们要把这些数据,从各医院、各科室搞出来也很累。相反,如果一个创业者在医疗行业耕耘很多年,也许拿起数据来比大公司更容易。
 
    这要求创始团队的合伙人中,必须有懂行业、有行业资源的人才。这与互联网+一样,一旦细分到具体行业,并不是说你百度、腾讯有资金、有流量,投入人才就什么都能做,比拼的还有行业资源和人脉。
 
    之所以跟大家聊这个话题,是因为前一段去百度大学跟大家交流,他们提到百度人工智能在无人车和 DuerOS 的应用。同时又问我,人脸识别在国内安防领域的应用价值非常大。像海康威视有近 3000 亿人民币的市值,每年光净利润就有近百亿。百度在 AI 方面是不是该考虑进军这个领域。我回答说千万别,因为安防是典型的、有巨大壁垒的“行业 +AI”领域。
 
    即使百度技术好,在人脸识别率方面比海康威视高一个百分点(实际不一定,海康背后有几百人的 AI 研发团队)。但这并不代表百度就能替代海康。因为安防是“非关键性应用”(non-mission-critical),100 个犯人我识别了 95 个,你比我多识别了一个做到了 96 个,其实没那么重要。
 
    而反过来,海康对比百度有什么优势?首先海康是做摄像头的,用自己的硬件跑自己的算法,是很自然的事儿。就像苹果手机,软硬一体体验更好。其次,海康做了这么多年的安防,积累了非常多的数据,人脸的数据、环境的数据……在安防领域有数据优势。最后,海康给公安系统做了很多类似警务通、基站信息采集、视图档案管理等 SaaS 平台的东西,以及警用云系统。我们可以认为公安系统的 IT 化,其中有一部分就是海康威视参与的。
 
    这些东西可能不赚钱,但却为海康构建了壁垒。因为底层的基础设施都是我建的,那前端的东西就只能用我的(我可以有 100 个理由,说竞品与我不兼容)。而且海康做了这么长时间,积累了大量的客户资源,特别是政府公安局的资源,开拓这些资源非常需要时间。
 
    这些就是所谓的行业纵深。所以即使对 BAT 而言,想进入“行业 +AI”领域,选择垂直赛道时,同样要非常谨慎。在巨大的行业壁垒面前,真不是说我的算法比你好一些,市场就是我的,只有技术优势仍然差的很远。
 
    回归 “AI+ 行业”和“行业 +AI”,通常来讲前者的行业纵深会比较浅,而后者则有巨大的行业壁垒。而行业壁垒,则是创业公司最大的护城河,也是抵挡 BAT 的关键。
 
    第四个问题:关键性应用 vs 非关键性应用
 
    谈到人工智能领域的创业,很多人都会有个误解,就是如果我团队没有个大牛的科学家,比如斯坦福、MIT 的博士坐镇,我都不好意思讲在人工智能方面创业。其实这个认知是完全错的。因为在人工智能领域,算法到底有多重要,完全取决于你要准备进入哪个行业。
 
    根据行业和应用场景不同,我认人工智能的创业本质上有 mission-critical 和 non-mission-critical 之分。为了方便大家理解,我们简称为“关键性应用”和“非关键性应用”。
 
    “关键性应用”要追求 99.9……%后的多个9,做不到就没法商业化。比如大家认为,99% 可靠度的自动驾驶能上路吗?肯定不能,意味着 100 次就出 1 次事故。99.9% 也不行,1000 次出一次事故。
 
    千万记住,99% 和 99.9% 的可靠度差距并不是 0.9%,而是要反过来算,差距是 10 倍。也包括手术机器人,听起来 99.9% 可靠度已经很高了,但意味着 1000 次出一次医疗事故,放在美国,医院还不得被巨额索赔搞得破产。
 
    所以“关键性应用”领域,就是一丁点儿错都不能犯的人工智能领域,必须要有技术大牛、科学家或算法专家坐镇。同时,这类项目研发周期都很长。
 
    正如以色列做 ADAS (高级驾驶辅助系统)解决方案的 Mobileye 公司,今年 3 月被 Intel 以 153 亿美金收购。大家知道这家公司研发周期有多长吗?Mobileye 成立于 1999 年,到他们推出首款产品、挣到第一桶金已是 2007 年。长达 8 年的研发周期。这在互联网创业里不可想象。包括谷歌无人车从 2009 年开始研发,到现在一直没有商业化;达芬奇手术机器人从启动研发到 2000 年拿到美国食品药品管理局(FDA)的认证,花了十年时间。
 
    “关键性应用”的普遍特点就是这样,项目通常很贵,研发周期巨长,离钱非常远,需要持续的融资能力,团队怎样才有持续融资?起码要有非常好的简历和非常好的背景。这个是能够持续融资的必要前提。所以大家可以看到,今天做无人驾驶的创业团队都是高富帅。因为不是高富帅,你都熬不到产品真正商业化应用那天。
 
    当然,如果在人工智能领域都是“关键性应用”,那就没大多数创业者什么事了。实际上,人工智能领域的创业,95% 都是“非关键性应用(none-mission-critical)”。简单讲对这些领域,AI 的可靠度只要过了基础线,高一点低一点区别不大。
 
    最简单的例子,现在很多公司的门禁开始用人脸识别。你今天带个帽子,明天戴个墨镜或口罩,识别率没法做到 99%。可即使没识别出来也没问题。因为所有带人脸识别的门禁都有地方让你按指纹。即使指纹也刷不进去,问题也不大,公司不还有前台吗。
 
    这就是“非关键性应用“。这类项目不追求 99% 后面的很多个9。实际上,国内人工智能和机器人方向的创业,大部分领域都是“非关键性应用”。当然并不是说,在这个领域算法不重要,你天天认不出来也不行,所以一定要过了基础的可用性门槛,偶尔出现问题可以容忍。“关键性应用”则不能容忍。
 
    “非关键性应用“不追求高大上,简单、实用、性价比高更重要,这样的项目通常比拼综合实力。包括:
 
  • 对行业的洞察理解。要熟知行业痛点;
 
  • 产品和工程化能力。光在实验室里搞没意义;
 
  • 成本控制。不光能做出来的产品,还得便宜的做出来;
 
  • 供应链能力。不光能出货,还要能批量生产;
 
  • 营销能力。产品出来了,你得把东西卖出去。团队里有没有营销高手,能不能搞定最好的渠道是关键。
 
    所以大家在创业组团队时,一定要想好你选择的赛道处于哪个领域,不同的赛道对于团队的要求是不一样。“关键性应用”必须有技术大牛坐镇,“非关键性应用”则要求团队更加综合和全面。

责任编辑:李欢
本文为授权转载文章,任何人未经原授权方同意,不得复制、转载、摘编等任何方式进行使用,e-works不承担由此而产生的任何法律责任! 如有异议请及时告之,以便进行及时处理。联系方式:editor@e-works.net.cn tel:027-87592219/20/21。
e-works
官方微信
掌上
信息化
编辑推荐
新闻推荐
博客推荐
视频推荐