图22 侧围优化结果解析
图23 防火墙优化结果解析
通过折衷规划法,综合优化工况兼顾各个分析工况的性能要求,拓扑优化结果在满足刚度和碰撞多学科性能的基础上,实现最佳材料分布。设计人员可根据拓扑优化结果,改进原始车型的车身架构,在车身结构设计早期获取满足多学科性能的设计方案,从而加速车身开发速度,提升产品的竞争力。
4 结论
(1)本研究在HyperMesh前处理工具中建立上述拓扑优化工况,并采用OptiStruct求解器进行拓扑优化,获取较为清晰的找到各个分析工况的载荷传递路径。通过拓扑优化,将材料分布的到最需要加强的结构上,极大提高了结构的材料利用率,从而为后期的轻量化优化提供最优的车架拓扑架构。
(2)本研究采用折衷规划法进行多工况拓扑优化,消除了各个优化工况的单位量纲差异,从而获得清晰的载荷传递路径,并实现各个性能之间的权衡;本研究采用线性工况等效的方法来处理碰撞工况,其拓扑优化结果仍需要进一步的验证,未来将开展非线性拓扑优化方法研究,例如静载等效法(Equivalent Static Load)和混合细胞自动机法(Hybrid Cellular Automation)。