机器视觉检测系统的一个应用案例!_精益生产_先进制造技术_文章_e-works数字化企业网
 
 
e-works数字化企业网  »  文章频道  »  先进制造技术  »  精益生产

机器视觉检测系统的一个应用案例!

2018/5/15    来源:Minor昔年    作者:佚名      
关键字:机器视觉  机器视觉检测系统  
西班牙Tecnalia公司的工程师开发出了一套称为Surfin'的机器视觉系统,其能使钢铁制造商在钢板从推进台推出时,就检测到产生的标记和缺陷。

    利用视觉技术检测热轧钢材的表面,即便钢材的温度超过1000℃,也好像它们是冷的一样。

    为了生产无缝钢管,需要先将钢坯输送到炉中加热。接着,将坯料穿孔以形成厚壁的中空壳体,之后将芯棒插入壳体中。然后在芯棒式无缝管轧机中进行伸长轧制。在伸长工艺之后,坯料输送到推进台,在那里它被推动穿过一系列轧辊机座。最终形成具有连续更小壁厚的中空长钢管。

    尽管与热轧工艺一样有效,在轧机台架中的轧辊机座偶尔可以在钢表面上产生标记和缺陷,这些缺陷在热条件下非常难以检测。因此,在质量改进项目中,许多制造商希望尽可能早地识别这些缺陷,以避免以相当大的代价生产出大量有缺陷的材料。

视觉系统

    为了解决这些问题,西班牙Tecnalia公司的工程师开发出了一套称为Surfin'的机器视觉系统,其能使钢铁制造商在钢板从推进台推出时,就检测到这类缺陷(见图1)。检测这种缺陷为制造商提供了生产过程中任何问题的指示,使制造商能在早期阶段对推进台进行预防性维护,防止将任何有缺陷的钢管交付给客户。

Surfin'的机器视觉系统

图1 Surfin'的机器视觉系统

    西班牙Tecnalia公司的工程师开发出了一套称为Surfin'的机器视觉系统,其能使超过1000℃的钢板从推进台推出时,就可检测到钢材上的缺陷。

    由轧辊机座产生的这种钢管表面上的典型缺陷,通常遵循重复模式持续出现,直到轧机支架改变。这些缺陷包括表面上的裂缝、轧机支架阻挡标记、裂纹以及分离的钢材,其随后会粘贴到钢管表面的另一部分上。

    开发人员面临严峻的挑战。这种生产环境中的条件可谓极端恶劣:不仅以6~7m/s的相对高速生产钢管(Surfin'可以工作在高达10m/s下),而且钢材从轧辊机座推出时的温度约为1000℃,再加上环境脏、存在水和油蒸汽,从而使缺陷检测更为棘手。

    由于钢材的热表面辐射的光与IR、红光、橙光和黄光波段的热发射直接相关,因此捕获钢材表面反射的所有光的图像,将使相机中的传感器饱和,因为相机对钢管辐射的所有光都敏感。为了解决这一问题,Surfin'系统(专利号ES2378602和EP2341330)使用的光,其波长远离炽热钢材所发射光谱的波长。

    然后,系统中相机捕获的图像,通过美国Edmund Optics公司的窄带光学带通滤光片(中心波长为470nm、带宽为10nm)和一个红外(IR)辐射滤光片。这两个滤光片使CCD相机只接收所需波段中的辐射,而加入IR滤光片来保护电子系统免受热辐射。受控照明技术允许系统捕获钢管整个表面的图像,就好像钢管是冷的一样。

    为了使系统能捕获钢管表面的360°图像,该系统使用了加拿大Teledyne DALSA公司的三套14000 lines/s的Spyder 3线扫描相机,以120°的角度间隔垂直于轧制钢管轴平面、安装在保护性罩壳中,围绕在推进台的输出端。在该系统的前一个版本中,在每台相机的两侧使用加拿大Laserglow Technologies公司的两个200mW 473nm蓝光激光光源,对钢管表面进行暗场照明。由于系统的几何形状,其可以实时地连续捕获钢管的完整图像(见图2a和b)。

连续捕获钢管的完整图像

图2 连续捕获钢管的完整图像

a)为了使系统能够精确地捕获钢管表面(3)的360°图像,系统使用三组激光器(1)和14000 lines/s线扫描相机(2)。B)激光器和相机组以120°角度间隔安装在垂直于滚动轴平面的同一平面内,相机位于推进台输出端周围的保护罩壳中。

    由于环境的温度很高,保持相机连续冷却至关重要。为此,将压缩冷却空气注入到保护罩壳中,保护相机和激光设备免受热和恶劣环境的影响。空气不仅冷却系统,而且之后过量的空气通过窗口排出,激光器通过该窗口输出光束,相机通过该窗口捕获图像,防止鳞状物、氧化物、灰尘和液体沉积。

    图像处理

    一旦捕获了钢材表面的图像,接下来便通过光纤千兆以太网链路将图像传送100m到达控制室中基于PC的服务器上。在这里,首先对图像进行预处理,以利用诸如直方图均衡等定制图像增强算法,来增强图像的对比度。由于原始图像中的可用数据由近对比度值表示,所以该技术增加了图像的全局对比度。

    图像增强之后,使用定制软件处理,在系统的先前版本中,该软件采用基于支持向量机(SVM)的辅助学习系统。一旦系统被教育通过纹理、对比度和尺寸,识别来自不同样品的缺陷,则算法可以自动检测和分类生产环境中最重要的生产缺陷(见图3)。

钢材中出现的典型缺陷包括(a)材料粘贴(b)材料被去除和(c)辊痕

图3 钢材中出现的典型缺陷包括(a)材料粘贴(b)材料被去除和(c)辊痕

    基于PC的服务器用于存储来自相机的图像、被发现的缺陷数据,以及缺陷在钢管上位置,还将在Oracle数据库中存储压力、温度、速度信号、通信和其他钢管生产数据的报警,用于质量控制和可追溯性。还可以通过在连接到公司局域网(LAN)的计算机上安装客户端应用,对服务器上的数据进行远程检查。

    自从该系统最初开发以来,已经经历了几次增强,系统的结构现在已经过重新设计,能够更容易地对准和调整相机和调节照明。

    较新版本的系统还采用了液体而非空气制冷技术,使照明和传感器能够更靠近钢管放置,从而实现更热或更大面积的钢管成像。美国Metaphase Technologies公司的LED光源也已经替代了早期的激光器,使光源的寿命从2000小时增加到了50000小时,并且消除了诸如散斑之类可能破坏相机捕获的图像的因素。

    软件用户界面也得到了改进,现在工厂操作员能在钢材上出现缺陷时,看到它们的位置和特定属性(见图4)。现在还可以在数据库上存储几个月的生产数据,这样工厂经理就能查看可能发生的任何错误的周期性,并安排定期预防性维护操作。该系统还可以支持多用户,这些用户不仅可以本地访问系统,还可以通过互联网访问系统。

定制的软件用户界面,使工厂操作员能够实时看到钢材上缺陷的位置和特定属性

图4 定制的软件用户界面,使工厂操作员能够实时看到钢材上缺陷的位置和特定属性

责任编辑:程玥
本文来源于互联网,e-works本着传播知识、有益学习和研究的目的进行的转载,为网友免费提供,并以尽力标明作者与出处,如有著作权人或出版方提出异议,本站将立即删除。如果您对文章转载有任何疑问请告之我们,以便我们及时纠正。联系方式:editor@e-works.net.cn tel:027-87592219/20/21。
e-works
官方微信
掌上
信息化
编辑推荐
新闻推荐
博客推荐
视频推荐